在两个不同的口袋中,各装有大小、形状完全相同的1个红球、2个黄球.现分别从每一个口袋中各任取2个球,设随机变量为取得红球的个数. (Ⅰ)求的分布列;(Ⅱ)求的数学期望.
(本题10分)椭圆过点,离心率为,左、右焦点分别为,过的直线交椭圆于两点.(Ⅰ)求椭圆C的方程;(Ⅱ)当的面积为时,求直线的方程.
(本题10分)已知,若命题“ p且q”和“¬p”都为假,求的取值范围.
已知椭圆的离心率,过点和的直线与原点的距离为. (1)求椭圆的方程;(2)设为椭圆的左、右焦点,过作直线交椭圆于两点,求的内切圆半径的最大值.
已知函数,,.(1)求函数的极值;(2)若在上为单调函数,求的取值范围.
(原创)如图,已知是正三角形,,且的中点. (1)求证:;(2)求四棱锥的全面积.