(本小题满分13分)有A、B、C、D、E共5个口袋,每个口袋装有大小和质量均相同的4个红球和2个黑球,现每次从其中一个口袋中摸出3个球,规定:若摸出的3个球恰为2个红球和1个黑球,则称为最佳摸球组合.(1) 求从口袋A中摸出的3个球为最佳摸球组合的概率;(2) 现从每个口袋中摸出3个球,求恰有3个口袋中摸出的球是最佳摸球组合的概率.
.(本小题满分14分) 已知数列满足且 (1)求; (2)数列满足,且时. 证明当时, ; (3)在(2)的条件下,试比较与4的大小关系.
. (本小题满分13分)设A,B是椭圆上的两点,为坐标原点,向量,向量。(1)设,证明:点M在椭圆上;(2)若点P、Q为椭圆上两点,且∥试问:线段PQ能否被直线OA平分?若能平分,请加以证明;若不能平分,请证明理由。
(本小题满分12分)已知函数.(1)求a的取值范围;(2)若对任意的成立,求的取值范围。
. (本小题满分12分)如图,四棱锥P-ABCD的底面为等腰梯形,AB∥CD,AC⊥BD,垂足为H,PH是四棱锥的高,已知AB=,∠APB=∠ADB=60°(Ⅰ)证明:平面PAC⊥平面PBD;(Ⅱ)求PH与平面PAD所成的角的大小.
(本小题满分12分)某电视台为了宣传某沿江城市经济崛起的情况,特举办了一期有奖知识问答活动,活动对18—48岁的人群随机抽取 n人回答问题“沿江城市带包括哪几个城市”,统计数据结果如下表:
(Ⅰ)分别求出n,a,x的值;(Ⅱ)若以表中的频率近似看作各年龄组正确回答问题的概率,规定年龄在[38,48〕内回答正确的得奖金200元,年龄在[18,28〕内回答正确的得奖金100元。主持人随机请一家庭的两个成员(父亲46岁,孩子21岁)回答正确,求该家庭获得奖金的分布列及数学期望(两人回答问题正确与否相互独立)。