如图,在直角体系中,直线AB交x轴于点A(5,0),交y轴于点B,AO是⊙M的直径,其半圆交AB于点C,且AC=3。取BO的中点D,连接CD、MD和OC。(1)求证:CD是⊙M的切线;(2)二次函数的图象经过点D、M、A,其对称轴上有一动点P,连接PD、PM,求△PDM的周长最小时点P的坐标;(3)在(2)的条件下,当△PDM的周长最小时,抛物线上是否存在点Q,使?若存在,求出点Q的坐标;若不存在,请说明理由。
解方程:x2-25=0
在△ABC中,三边a、b、c满足:a+b+c=,a2+b2+c2=,试判断△ABC的形状.
在高尔夫球比赛中,某运动员打出的球在空中飞行高度h(m) 与打出后飞行的时间t(s)之间的关系是h=7t-t2. (1)经过多少秒钟,球飞出的高度为10m; (2)经过多少秒钟,球又落到地面.
用配方法求证:的值恒小于零.
用配方法求证:的值恒大于零.