2010年底某市汽车拥有量为100万辆,而截止到2012年底,该市的汽车拥有量已达到144万辆.(1)求2010年底至2012年底该市汽车拥有量的年平均增长率;(2)该市交通部门为控制汽车拥有量的增长速度,要求到2013年底全市汽车拥有量不超过155.52万辆,预计2013年报废的汽车数量是2012年底汽车拥有量的10%,求2012年底至2013年底该市汽车拥有量的年增长率要控制在什么范围才能达到要求.
解方程:
解方程组
先化简,再求值:(-)·,其中x=-3.
(本小题满分12分)如图,平面直角坐标系中,抛物线交轴于A、B两点(点B在点A的右侧),交轴于点C,以OC、OB为两边作矩形OBDC,CD交抛物线于G.(1)求OC和OB的长;(2)抛物线的对称轴在边OB(不包括O、B两点)上作平行移动,交轴于点E,交CD于点F,交BC于点M,交抛物线于点P.设OE=m,PM=h,求h与m的函数关系式,并求出PM的最大值;(3)在(2)的情况下,连接PC,则在CD上方的抛物线部分是否存在这样的点P,使得以P、C、F为顶点的三角形和△BEM相似?若存在,直接写出此时m的值,并直接判断此时△PCM的形状;若不存在,请说明理由.
(本题12分)某学校活动小组在作三角形的拓展图形,研究其性质时,经历了如下过程:(1)●操作发现:在等腰△ABC中,AB=AC,分别以AB和AC为斜边,向△ABC的外侧作等腰直角三角形,如图1所示,其中DF⊥AB于点F,EG⊥AC于点G,M是BC的中点,连接MD和ME,则下列结论正确的是 ①②③④(填序号即可)①AF=AG=AB;②MD=ME;③整个图形是轴对称图形.(2)●数学思考:在任意△ABC中,分别以AB和AC为斜边,向△ABC的外侧作等腰直角三角形,如图2所示,M是BC的中点,连接MD和ME,则MD与ME具有怎样的数量和位置关系?请给出证明过程;(3)●类比探究:在任意△ABC中,仍分别以AB和AC为斜边,向△ABC的内侧作等腰直角三角形,如图3所示,M是BC的中点,连接MD和ME,则△MED的形状为___________________.等腰直角三角形