如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=3cm.动点M,N从点C同时出发,均以每秒1cm的速度分别沿CA、CB向终点A,B移动,同时动点P从点B出发,以每秒2cm的速度沿BA向终点A移动,连接PM,PN,设移动时间为t(单位:秒,0<t<2.5).(1)当t为何值时,以A,P,M为顶点的三角形与△ABC相似?(2)是否存在某一时刻t,使四边形APNC的面积S有最小值?若存在,求S的最小值;若不存在,请说明理由.
解方程:
化简求值.4ab+2b2-[(a2+b2)-(a2-b2)];其中a=-2,b=3
解方程:3(x-1)=5x+4
(1)如图1,满足. ①求的值; ②若C(-6,0),连CB,作BE⊥CB,垂足为B,且BC=BE,连AE交轴于P,求P点坐标. (2)如图2,若A(6,0),B(0,3),点Q从A出发,以每秒1个单位的速度沿射线AO匀速运动,设点Q运动时间为秒,过Q点作直线AB的垂线,垂足为D,直线QD与轴交于E点,在点Q的运动过程中,一定存在△EOQ≌△AOB,请直接写出存在的值以及相应的E点坐标.
如图,将边长为8的正方形ABCD沿着折痕EF折叠,使点B落在边AD的中点G处,求: (1)线段BE的长; (2)当∠DGK=450时,求四边形EFKG的面积.