一不透明的布袋里,装有红、黄、蓝三种颜色的小球(除颜色外其余都相同),其中有红球2个,篮球1个,黄球若干个,现从中任意摸出一个球是红球的概率为.(1)求口袋中黄球的个数;(2)甲同学先随机摸出一个小球(不放回),再随机摸出一个小球,请用“树状图法”或“列表法”,求两次摸出都是红球的概率;(3)现规定:摸到红球得5分,摸到黄球得3分(每次摸后放回),乙同学在一次摸球游戏中,第一次随机摸到一个红球第二次又随机摸到一个蓝球,若随机,再摸一次,求乙同学三次摸球所得分数之和不低于10分的概率.
已知代数式A=2x2+3xy+2y-1,B=x2-xy+x-(1)求A-2B;(2)若A-2B的值与x的取值无关,求y的值.
化简 (1)3x2+2x-5x2+3x (2)4(m2+n)+2(n-2m2) (3)-3(2x2-xy)-(x2+xy-6) (4)-(6a3b+2b2)+(4a3b-8b2) (5)先化简,再求值:3x2y-[2x2y-(2xy-3x2y)]+3xy2,其中x=3,y=-
已知抛物线与轴交于点,且.(1)求抛物线的解析式.(2)抛物线的对称轴为,与y轴的交点为C,顶点为D,点C关于的对称点为E.是否存在x轴上的点M、y轴上的点N,使四边形DNME的周长最小?若存在,请画出图形(保留作图痕迹),并求出周长的最小值;若不存在,请说明理由.(3)若点P在抛物线上,点Q在x轴上,当以点D、E、P、Q为顶点的四边形是平行四边形时,求点P的坐标。
AH是⊙O的直径,AE平分∠FAH,交⊙O于点E,过点E的直线FG⊥AF,垂足为F,B为直径OH上一点,点E、F分别在矩形ABCD的边BC和CD上.(1)求证:直线FG是⊙O的切线;(2)若CD=10,EB=5,求⊙O的直径.
已知关于的一元二次方程.(1)若方程有实数根,求实数的取值范围;(2)若方程的两个实数根分别为,且满足,求实数的值.