阅读材料: 小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如:,善于思考的小明进行了以下探索:设(其中均为整数),则有 .∴.这样小明就找到了一种把部分的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:当均为正整数时,若,用含m、n的式子分别表示,得 = ,= ;(2)利用所探索的结论,找一组正整数,填空: + =( + )2;(3)若,且均为正整数,求的值.
如图,在△ABC中,AB=AC,点P、D分别是BC、AC边上的点,且∠APD=∠B. (1)求证:AC•CD=CP•BP; (2)若AB=10,BC=12,当PD∥AB时,求BP的长.
如图,已知,在△ABC中,CA=CB,∠ACB=90°,E,F分别是CA,CB边的三等分点,将△ECF绕点C逆时针旋转α角(0°<α<90°),得到△MCN,连接AM,BN. (1)求证:AM=BN; (2)当MA∥CN时,试求旋转角α的余弦值.
如图1,在△ABC中,∠ACB=90°,AC=BC,∠EAC=90°,点M为射线AE上任意一点(不与A重合),连接CM,将线段CM绕点C按顺时针方向旋转90°得到线段CN,直线NB分别交直线CM、射线AE于点F、D. (1)直接写出∠NDE的度数; (2)如图2、图3,当∠EAC为锐角或钝角时,其他条件不变,(1)中的结论是否发生变化?如果不变,选取其中一种情况加以证明;如果变化,请说明理由; (3)如图4,若∠EAC=15°,∠ACM=60°,直线CM与AB交于G,BD= ,其他条件不变,求线段AM的长.
如图,在△ABC中,AB=AC,∠DAC是△ABC的一个外角. 实践与操作: 根据要求尺规作图,并在图中标明相应字母(保留作图痕迹,不写作法). (1)作∠DAC的平分线AM; (2)作线段AC的垂直平分线,与AM交于点F,与BC边交于点E,连接AE、CF. 猜想并证明: 判断四边形AECF的形状并加以证明.
如图,在△ABC中,AB=4cm,AC=6cm. (1)作图:作BC边的垂直平分线分别交与AC,BC于点D,E(用尺规作图法,保留作图痕迹,不要求写作法); (2)在(1)的条件下,连结BD,求△ABD的周长.