【本小题满分11分】如图,已知抛物线的顶点D的坐标为(1,),且与x轴交于A、B两点,与y轴交于C点,A点的坐标为(4,0).P点是抛物线上的一个动点,且横坐标为m.(l)求抛物线所对应的二次函数的表达式;(2)若动点P满足∠PAO不大于45°,求P点的横坐标m的取值范围;(3)当P点的横坐标时,过p点作y轴的垂线PQ,垂足为Q.问:是否存在P点,使∠QPO=∠BCO?若存在,请求出P点的坐标;若不存在,请说明理由.
我市某社区创建学习型社区,要调查社区居民双休日的学习状况,采用下列调查方式: ①从一幢高层住宅楼中选取200名居民;②从不同住宅楼中随机选取200名居民;③选取社区内200名在校学生。 ⑴上述调查方式最合理的是 (填序号); ⑵将最合理的调查方式得到的数据制成扇形统计图和频数分布直方图,在这个调查中,200名居民双休日在家学习的有 人; ⑶请估计该社区2000名居民双休日学习时间不少于4小时的人数。
如图,点B在AE上,∠CAB=∠DAB,要使△ABC≌△ABD,可补充的一个条件是:(写一个即可),并说明理由.
(1)计算: (2)
在半径为4的⊙O中,点C是以AB为直径的半圆的中点,OD⊥AC,垂足为D,点E是射线AB上的任意一点,DF//AB,DF与CE相交于点F,设EF=,DF=. (1) 如图1,当点E在射线OB上时,求关于的函数解析式,并写出自变量的取值范围; (2) 如图2,当点F在⊙O上时,求线段DF的长; (3) 如果以点E为圆心、EF为半径的圆与⊙O相切,求线段DF的长.
如图,在平面直角坐标系中,二次函数y=ax2+6x+c的图象经过点A(4,0)、B(﹣1,0),与y轴交于点C,点D在线段OC上,OD=t,点E在第二象限,∠ADE=90°,tan∠DAE=,EF⊥OD,垂足为F. (1)求这个二次函数的解析式; (2)求线段EF、OF的长(用含t的代数式表示); (3)当△ECA为直角三角形时,求t的值.