在边长为的正方形ABCD中,E、F分别为BC、CD的中点,M、N分别为AB、CF的中点,现沿AE、AF、EF折叠,使B、C、D三点重合,重合后的点记为,构成一个三棱锥.(1)请判断与平面的位置关系,并给出证明;(2)证明平面;(3)求二面角的余弦值.
已知函数.(1)求函数在区间上的最大值和最小值;(2)若,其中 求的值.
已知函数(是自然对数的底数).(1)若曲线在处的切线也是抛物线的切线,求的值;(2)当时,是否存在,使曲线在点处的切线斜率与 在上的最小值相等?若存在,求符合条件的的个数;若不存在,请说明理由.
如图,在平面直角坐标系中,已知,,,直线与线段、分别交于点、.(1)当时,求以为焦点,且过中点的椭圆的标准方程;(2)过点作直线交于点,记的外接圆为圆.①求证:圆心在定直线上;②圆是否恒过异于点的一个定点?若过,求出该点的坐标;若不过,请说明理由.
数列的前项和为,且是和的等差中项,等差数列满足,.(1)求数列、的通项公式;(2)设,数列的前项和为,证明:.
如图,边长为2的正方形中,点是的中点,点是的中点,将△、△ 分别沿、折起,使、两点重合于点,连接,.(1)求证:; (2)求点到平面的距离.