用配方法解关于x的一元二次方程ax2+bx+c=0.
已知:,求代数式的值.
已知:如图,在△中,.⊥于点,且,⊥交的延长线于点.求证:.
解方程:
计算:.
已知:如图,矩形ABCD,AB = 4,∠ACB = 30°.点E从点C出发,沿折线CA—AD以每秒一个单位长度的速度运动,过点E作EF∥CD交BC于点F,同时过点E作EG⊥AC交直线BC于点G,设运动的时间为t,△EFG与△ABC重叠部分的面积为S,当点E运动到点D时停止运动.(1)当点B与点G重合时,求此时t的值;(2)直接写出S与t之间的函数关系式和相应的自变量取值范围;(3)当t = 4时,将△EFG绕点E顺时针旋转一个角度(),∠GEF的两边分别交矩形的边于点M,点N.当△MEN为等腰三角形时,求此时△MEN的面积.