如图,二次函数y=x2+bx-3b+3的图象与x轴交于A、B两点(点A在点B的左边),交y轴于点C,且经过点(b-2,2b2-5b-1).(1)求这条抛物线的解析式;(2)⊙M过A、B、C三点,交y轴于另一点D,求点M的坐标;(3)连接AM、DM,将∠AMD绕点M顺时针旋转,两边MA、MD与x轴、y轴分别交于点E、F,若△DMF为等腰三角形,求点E的坐标.
已知关于的一元二次方程有实数根,为正整数.(1)求的值;(2)当此方程有两个非零的整数根时,将关于的二次函数的图象向 下平移8个单位,写出平移后的图象的解析式;
如图,随机闭合开关S1、S2、S3中的两个,求能让灯泡发光的概率.(用树形图或列表法)
(满分9分)如图、是半径为1的的两条切线,点、分别为切点, ∠APB=60°,OP与弦AB交于点C,与交于点D.(1)在不添加任何辅助线的情况下,写出图中所有的全等三角形;(2)求阴影部分的面积(结果保留).
用一个圆心角为80°,半径为4的扇形做一个圆锥,求这个圆锥的侧面积.(结果保留)
已知抛物线(1)求出它的顶点坐标和对称轴方程;(2)若抛物线与x轴的两个交点为A、B,求线段AB的长。