如图,为了测出某塔CD的高度,在塔前的平地上选择一点A,用测角仪测得塔顶D的仰角为30°,在A、C之间选择一点B(A、B、C三点在同一直线上).用测角仪测得塔顶D的仰角为75°,且AB间的距离为40m.(1)求点B到AD的距离;(2)求塔高CD(结果用根号表示).
化简: x 2 - 2 x + 1 x 2 - 1 ÷ x 2 - x x + 1 .
如图,线段 AC 、 BD 相交于点 E , AE=DE , BE=CE .求证: ∠B=∠C .
如图,点 A 、 B 在数轴上,它们对应的数分别为 -2 , x x + 1 ,且点 A 、 B 到原点的距离相等.求 x 的值.
计算: ( 1 2 ) - 1 - ( 2019 - π ) 0 +2sin30° .
如图,直线 y=-x+4 与 x 轴, y 轴分别交于 A , B 两点,过 A , B 两点的抛物线 y=a x 2 +bx+c 与 x 轴交于点 C(-1,0) .
(1)求抛物线的解析式;
(2)连接 BC ,若点 E 是线段 AC 上的一个动点(不与 A , C 重合),过点 E 作 EF//BC ,交 AB 于点 F ,当 ΔBEF 的面积是 5 2 时,求点 E 的坐标;
(3)在(2)的结论下,将 ΔBEF 绕点 F 旋转 180° 得△ B'E'F ,试判断点 E' 是否在抛物线上,并说明理由.