“安全教育,警钟长鸣”,为此,某校随机抽取了九年级(1)班的学生对安全知识的了解情况进行了一次调查统计.图①和图②是通过数据收集后,绘制的两幅不完整的统计图.请你根据图中提供的信息,解答以下问题:(1)九年级(1)班共有 名学生;(2)在扇形统计图中,对安全知识的了解情况为“较差”部分所对应的圆心角的度数是 ;(3)若全校有1500名学生,估计对安全知识的了解情况为“较差”、“一般”的学生共有 名.
如图1,小红家阳台上放置了一个晒衣架.如图2是晒衣架的侧面示意图,立杆AB.CD相交于点O,B.D两点立于地面,经测量:AB=CD=136cm,OA=OC=51cm,OE=OF=34cm,现将晒衣架完全稳固张开,扣链EF成一条直线,且EF=32cm.(1)求证:AC∥BD;(2)求扣链EF与立杆AB的夹角∠OEF的度数(精确到0.1°);(3)小红的连衣裙穿在衣架后的总长度达到122cm,垂挂在晒衣架上是否会拖落到地面?请通过计算说明理由.(参考数据:sin61.9°≈0.882,cos61.9°≈0.471,tan61.9°≈0.553;可使用科学记算器)
我们约定:如果身高在选定标准的±2%范围之内都称为“普通身高”.为了了解某校九年级男生中具有“普遍身高”的人数,我们从该校九年级男生中随机抽出10名男生,分别测量出他们的身高(单位:cm),收集并整理如下统计表:(1)计算这组数据的三个统计量:平均数、中位数、众数;(2)请你选择其中一个统计量作为选定标准,找出这10名男生中具有“普遍身高”是哪几位男生?并说明理由.
小明的妈妈在菜市场买回3斤萝卜、2斤排骨,准备做萝卜排骨汤.妈妈:“今天买这两样菜共花了45元,上月买同重量的这两样菜只要36元”;爸爸:“报纸上说了萝卜的单价上涨50%,排骨单价上涨20%”;小明:“爸爸、妈妈,我想知道今天买的萝卜和排骨的单价分别是多少?”请你通过列方程(组)求解这天萝卜、排骨的单价(单位:元/斤).
如图,等腰梯形ABCD放置在平面坐标系中,已知A(﹣2,0)、B(6,0)、D(0,3),反比例函数的图象经过点C.(1)求点C的坐标和反比例函数的解析式;(2)将等腰梯形ABCD向上平移2个单位后,问点B是否落在双曲线上?
如图,已知两个菱形ABCD.CEFG,其中点A.C.F在同一直线上,连接BE、DG.(1)在不添加辅助线时,写出其中的两对全等三角形;(2)证明:BE=DG.