如图①,在矩形纸片ABCD中,AB=+1,AD=.(1)如图②,将矩形纸片向上方翻折,使点D恰好落在AB边上的D′处,压平折痕交CD于点E,则折痕AE的长为 ;(2)如图③,再将四边形BCED′沿D′E向左翻折,压平后得四边形B′C′ED′,B′C′交AE于点F,则四边形B′FED′的面积为 ;(3)如图④,将图②中的△AED′绕点E顺时针旋转α角,得△A′ED″,使得EA′恰好经过顶点B,求弧D′D″的长.(结果保留π)
如图,在平面直角坐标系中,直线AB与y轴和x轴分别交于点A、点B,与反比例函数在第一象限的图象交于点C(1,6)、点D(3,n).过点C作CE⊥y轴于E,过点D作DF⊥x轴于F.(1)求m,n的值;(2)求直线AB的函数解析式;(3)求:△OCD的面积.
某县为了落实中央的“强基惠民工程”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙队先合做15天,那么余下的工程由甲队单独完成还需5天.(1)这项工程的规定时间是多少天?(2)已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙队合做来完成.则该工程施工费用是多少?
已知y1是正比例函数,y2是反比例函数,并且当自变量取1时,y1=y2;当自变量取2时,y1﹣y2=9,求y1和y2的解析式.
如图,CE=CB,CD=CA,∠DCA=∠ECB,求证:DE=AB.
已知:如图,△ABC和△DBE均为等腰直角三角形.(1)求证:AD=CE;(2)求证:AD和CE垂直.