如图所示,某学校拟建一个含内接矩形的菱形花坛(花坛为轴对称图形).矩形的四个顶点分别在菱形四条边上,菱形ABCD的边长AB=4米,∠ABC=60°.设AE=x米(0<x<4),矩形EFGH的面积为S米2.(1)求S与x的函数关系式;(2)学校准备在矩形内种植红色花草,四个三角形内种植黄色花草.已知红色花草的价格为20元/米2,黄色花草的价格为40元/米2.当x为何值时,购买花草所需的总费用最低,并求出最低总费用(结果保留根号)?
已知m是方程x2-x-2=0的一个实数根,求代数式的值.
已知:如图,在Rt△ABC中,∠C=90°,∠BAD=∠BAC,过点D作DE⊥AB,DE恰好是∠ADB的平分线,求证:CD=DB.
有一批图形计算器,原售价为每台800元,在甲、乙两家公司销售.甲公司用如下方法促销:买一台单价为780元,买两台每台都为760元.依次类推,即每多买一台,则所买各台单价均再减20元,但最低不能低于每台440元;乙公司一律按原售价的75%促销.某单位需购买一批图形计算器: (1)若此单位需购买6台图形计算器,应去哪家公司购买花费较少? (2)若此单位恰好花费7 500元,在同一家公司购买了一定数量的图形计算器,请问是在哪家公司购买的,数量是多少?
如图,一次函数y=kx+b与反比例函数的图象交于A(2,3),B(-3,n)两点. (1)求一次函数与反比例函数的解析式; (2)根据所给条件,请直接写出不等式kx+b>的解集______________; (3)过点B作BC⊥x轴,垂足为C,求S△ABC.
某池塘里养了鱼苗1万条,根据这几年的经验知道,鱼苗成活率为95%,一段时间后准备打捞出售,第一网捞出40条,称得平均每条鱼重2.5千克,第二网捞出25条,称得平均每条鱼重2.2千克,第三网捞出35条,称得平均每条鱼重2.8千克,试估计这池塘中鱼的质量.