如图所示,某学校拟建一个含内接矩形的菱形花坛(花坛为轴对称图形).矩形的四个顶点分别在菱形四条边上,菱形ABCD的边长AB=4米,∠ABC=60°.设AE=x米(0<x<4),矩形EFGH的面积为S米2.(1)求S与x的函数关系式;(2)学校准备在矩形内种植红色花草,四个三角形内种植黄色花草.已知红色花草的价格为20元/米2,黄色花草的价格为40元/米2.当x为何值时,购买花草所需的总费用最低,并求出最低总费用(结果保留根号)?
已知:直角梯形中,∥,∠=,以为直径的圆交于点、,连结、、. (1)在不添加其他字母和线的前提下,直接写出图1中的两对相似三角形: _____________________,______________________ ; (2)直角梯形中,以为坐标原点,在轴正半轴上建立直角坐标系(如图2),若抛物线经过点、、,且为抛物线的顶点. ①写出顶点的坐标(用含的代数式表示)___________; ②求抛物线的解析式; ③在轴下方的抛物线上是否存在这样的点,过点作⊥轴于点,使得以点、、为顶点的三角形与△相似?
如图1,△ABC中,BC=25,BC边上的高为20,将AB,AC分别n等分,连接两边对应的等分点,以这些连接线为一边做矩形,使这些矩形的边B1C1,B2C2,B3C3……的对应边分别为 B2C2,B3C3,B4C4…… (1)若n=5,如图2,求B3C3为一边的矩形的面积; (2)若n=5,求所有矩形的面积和; (3)当分为n等分时,你能用含有n的表达式表示所有矩形的面积和吗?
小明投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:,在销售过程中销售单价不低于成本价,而每件的利润不高于成本价的80%. (1)设小明每月获得利润为w(元),求每月获得利润w(元)与销售单价x(元)之间的函数关系式,并确定自变量x的取值范围. (2)当销售单价定为多少元时,每月可获得最大利润?每月的最大利润是多少? (3)如果小明想要每月获得的利润为2000元,那么小明每月的成本需要多少元?(成本=进价×销售量)
如图所示,已知抛物线的解析式为 (1)求抛物线的顶点坐标; (2)将抛物线每次向右平移2个单位,平移n次,依次得到抛物线(n为正整数) ①求抛物线与x轴的交点A1、A2的坐标; ②试确定抛物线的解析式.(直接写出答案,不需要解题过程)
如图AB为⊙O的直径,CD是弦,且AB⊥CD于点E.连结AC、OC、BC. (1)求证:∠ACO=∠BCD; (2)若EB=8cm,CD=24cm,求⊙O的直径.