在平面直角坐标系中,已知椭圆的左焦点为,且椭圆的离心率.(1)求椭圆的方程;(2)设椭圆的上下顶点分别为,是椭圆上异于的任一点,直线分别交轴于点,证明:为定值,并求出该定值;(3)在椭圆上,是否存在点,使得直线与圆相交于不同的两点,且的面积最大?若存在,求出点的坐标及对应的的面积;若不存在,请说明理由.
(拓展深化)如图所示,△ABC内接于⊙O,AB=AC,直线XY切⊙O于点C,BD∥XY,AC、BD相交于E.(1)求证:△ABE≌△ACD;(2)若AB=6 cm,BC=4 cm,求AE的长.
如图所示,已知四边形ABCD内接于⊙O,∠C=130°,AD是⊙O的直径,过B作⊙O的切线FE,求∠ABE的度数.
如图所示,已知BC是⊙O的弦,P是BC延长线上一点,PA与⊙O相切于点A,∠ABC=25°,∠ACB=80°,求∠P的度数.
如图,△ABC内接于⊙O,点D在OC的延长线上,sinB=,∠D=30°.(1)求证:AD是⊙O的切线.(2)若AC=6,求AD的长.
如图所示,在直角梯形ABCD中,∠A=∠B=90°,AD∥BC,E为AB上的点,DE平分∠ADC,CE平分∠BCD,以AB为直径的圆与CD有怎样的位置关系?