已知函数,,其中R.(1)讨论的单调性;(2)若在其定义域内为增函数,求正实数的取值范围;(3)设函数,当时,若,,总有成立,求实数的取值范围.
(本小题满分12分) 已知函数为奇函数,函数在区间上单调递减,在上单调递增. (I)求实数的值; (II)求的值及的解析式; (Ⅲ)设,试证:对任意的且都有.
(本小题满分12分) 关于的函数与数列具有关系:,(=1,2,3,…)(为常数),又设函数的导数,为方程的实根. (I)用数学归纳法证明:; (II)证明:.
(本小题满分12分) 试利用如图所示的等边三角形数阵,推导
(本小题满分12分) 已知展开式中最后三项的系数的和是方程的正数解,它的中间项是,求的值.
(本小题满分10分) 设函数 (I)求的最小值; (II)若对时恒成立,求实数的取值范围.