知数列的首项前项和为,且(1)证明:数列是等比数列;(2)令,求函数在点处的导数,并比较与的大小.
设函数是定义在上的减函数,并且满足, (1)求,,的值,(2)如果,求x的取值范围。
, (1)若命题T为真命题,求c的取值范围。 (2)若P或Q为真命题,P且Q为假命题,求c的取值范围.
已知集合A=,集合B=。 当=2时,求; 当时,若元素是的必要条件,求实数的取值范围。
(本小题满分12分)四棱锥中,底面为矩形,侧面底面,,,. (Ⅰ)证明:; (Ⅱ)设与平面所成的角为, 求二面角的余弦值.
(本小题满分12分)已知△BCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB=60°,E,F分别是AC,AD上的动点,且==λ (0<λ<1). (1)求证:不论λ为何值,总有平面BEF⊥平面ABC; (2)当λ为何值时?平面BEF⊥平面ACD.