如图,岸边的点A处距水面的高度AB为2.17米,桥墩顶部点C距水面的高度CD为23.17米.从点A处测得桥墩顶部点C的仰角为26°,求岸边的点A与桥墩顶部点C之间的距离.(结果精确到0.1米)(参考数据:sin26°=0.44,cos26°=0.90,tan26°=0.49)
如图:AB是⊙O的直径,以OA为直径的⊙O1与⊙O的弦AC相交于D,DE⊥OC,垂足为E。(1)求证:AD=DC(2)求证:DE是的切线(3)如果OE=EC,请判断四边形O1OED是什么四边形,并证明你的结论。
在数学活动课上,同学们用一根长为1米的细绳围矩形.(1)小明围出了一个面积为600㎝2的矩形,请你算一算,他围成的矩形的边长是多少?(2)小明想用这根细绳围成一个面积尽可能大的矩形,请你用所学过的知识帮他分析应该怎么围,并求出最大面积.
已知关于x的一元二次方程mx 2-(3m+2)x+2m+2=0(m>0)(1)求证:方程有两个不相等的实数根;(2)设方程的两个实数根分别为x1、x2(x1<x2),若y是关于m的函数,且y=x2-2x1,求这个函数的解析式;(3)在(2)的条件下,结合函数的图像回答:当自变量m的取值范围满足什么条件时,y≤2m.
(1)先化简,再求值:,其中.(2)计算:+()-2-(π-2)0+(-)2-│-3│
近海处有一可疑船只B正向南海方向行驶,我边防接到情报后速派出快艇A追赶,图中分别表示A艇和B艇,相对于海岸的距离y(海里)与追赶时间x(分钟)之间的一次函数的关系 (1)分别求出的函数关系式(2)当B船逃到离海岸12海里的南海时,A艇将无法对其进行检查,则A艇能否在B艇逃入南海前将其拦截(A、B匀速不变)