已知向量,(1)当时,求函数的值域:(2)锐角中,分别为角的对边,若,求边.
已知, (1)设集合,请用列举法表示集合B;(2)求和.
已知中心在原点的双曲线C的一个焦点是F1(-3,0),一条渐近线的方程是(1)求双曲线C的方程;(2)若以k(k≠0)为斜率的直线l与双曲线C相交于两个不同的点M, N,且线段MA的垂直平分线与两坐标轴围成的三角形的面积为,求k的取值范围。
已知函数.对于任意实数x恒有(1)求实数的最大值;(2)当最大时,函数有三个零点,求实数k的取值范围。
某工厂的固定成本为3万元,该工厂每生产100台某产品的生产成本为1万元,设生产该产品x(百台),其总成本为g(x)万元(总成本=固定成本+生产成本),并且销售收人r(x)满足假定该产品产销平衡,根据上述统计规律求:(1)要使工厂有盈利,产品数量x应控制在什么范围?(2)工厂生产多少台产品时盈利最大?
对一批共50件的某电器进行分类检测,其重量(克)统计如下:规定重量在82克及以下的为“A”型,重量在85克及以上的为“B”型,已知该批电器有"A"型2件(1)从该批电器中任选1件,求其为“B"型的概率;(2)从重量在[80,85)的5件电器中,任选2件,求其中恰有1件为“A”型的概率