极坐标系中椭圆C的方程为以极点为原点,极轴为轴非负半轴,建立平面直角坐标系,且两坐标系取相同的单位长度.(Ⅰ)求该椭圆的直角标方程;若椭圆上任一点坐标为,求的取值范围;(Ⅱ)若椭圆的两条弦交于点,且直线与的倾斜角互补,求证:.
已知函数的部分图象如图所示,其中点为最高点,点为图象与轴的交点,在中,角对边为,,且满足.(Ⅰ)求的面积;(Ⅱ)求函数的单调递增区间.
已知函数,其中.(Ⅰ)若,求函数的极值点;(Ⅱ)若在区间内单调递增,求实数的取值范围.
已知圆心为点的圆与直线相切.(1)求圆的标准方程;(2)对于圆上的任一点,是否存在定点 (不同于原点)使得恒为常数?若存在,求出点的坐标;若不存在,请说明理由.
如图,在四棱锥中,⊥平面,底面为梯形,∥,⊥,,点在棱上,且.(1)当时,求证:∥面;(2)若直线与平面所成角为,求实数的值.
已知的顶点,的平分线所在直线方程为,边上的高所在直线方程为.(1)求顶点的坐标;(2)求的面积.