已知定义在的函数,在处的切线斜率为(Ⅰ)求及的单调区间;(Ⅱ)当时,恒成立,求的取值范围.
(本小题满分12分)已知正项等比数列中,,且成等差数列.(1)求数列的通项公式;(2)设,求数列的前n项和.
(本小题满分12分)已知函数.(1)求的值;(2)求函数的最小正周期和单调增区间;(3)说明的图像是如何由函数的图像变换所得.
【改编】(本小题满分12分)贵广高速铁路自贵阳北站起,经黔南州、黔东南、广西桂林、贺州、广东肇庆、佛山终至广州南站.其中广东省内有怀集站、广宁站、肇庆东站、三水南站、佛山西站、广州南站共6个站.记者对广东省内的6个车站随机抽取3个进行车站服务满意度调查.(1)求抽取的车站中不含佛山市内车站(包括三水南站和佛山西站)的概率;(2)设抽取的车站中含有肇庆市内车站(包括怀集站、广宁站、肇庆东站)个数为X,求X的分布列及其均值(即数学期望).
对于函数,若时,恒有成立,则称函数是上 的“函数”.(Ⅰ)当函数是定义域上的“函数”时,求实数的取值范围;(Ⅱ)若函数为上的“函数”.(ⅰ)试比较与的大小(其中);(ⅱ)求证:对于任意大于的实数,,,,均有.
(本小题满分13分)已知椭圆的离心率为,且过点.(Ⅰ)求椭圆的标准方程;(Ⅱ)四边形ABCD的顶点在椭圆上,且对角线AC,BD过原点O,设,满足.(ⅰ)试证的值为定值,并求出此定值;(ⅱ)试求四边形ABCD面积的最大值.