已知函数.⑴ 求函数的单调区间;⑵ 如果对于任意的,总成立,求实数的取值范围;⑶ 设函数,. 过点作函数图像的所有切线,令各切点的横坐标构成数列,求数列的所有项之和的值.
已知函数,(Ⅰ)若是函数的一个极值点,求实数的值;(Ⅱ)设,当时,函数的图象恒不在直线上方,求实数的取值范围。
已知在与时都取得极值.(1)求的值;(2)若,求的单调区间和极值;
设函数在点处可导,试求下列各极限的值.1.;2.
设a,b,c是三个互不相等的实数,三条抛物线:试用反证法证明三条抛物线中至少有一条与x轴的交点不只一个。
有四个数,其中前三个数成等差数列,后三个数成等比数列,且第一个数与第四个数之和为16,第二个数与第三个数之和为12,求这四个数。