已知平面向量若函数.(Ⅰ)求函数的最小正周期;(Ⅱ)将函数的图象上的所有的点向左平移1个单位长度,得到函数的图象,若函数在上有两个零点,求实数的取值范围.
(本小题满分13分)已知数列是等比数列数列是等差数列,(Ⅰ)求数列的通项公式;(Ⅱ)求数列的前项和;(Ⅲ)设,比较与大小,并证明你的结论。
(本小题满分13分)已知函数(Ⅰ)求的最小正周期:(Ⅱ)求在区间上的最大值和最小值。
已知圆N:和抛物线C:,圆的切线与抛物线C交于不同的两点A,B,(1)当直线的斜率为1时,求线段AB的长;(2)设点M和点N关于直线对称,问是否存在直线使得?若存在,求出直线的方程;若不存在,请说明理由.
已知函数,(1)若函数在处的切线方程为,求实数,的值;(2)若在其定义域内单调递增,求的取值范围.
如图,在四棱锥中,底面是直角梯形,∥,,⊥平面SAD,点是的中点,且,.(1)求四棱锥的体积;(2)求证:∥平面;(3)求直线和平面所成的角的正弦值.