已知动点与定点的距离和它到直线的距离之比是常数,记的轨迹为曲线.(I)求曲线的方程;(II)设直线与曲线交于两点,点关于轴的对称点为,试问:当变化时,直线与轴是否交于一个定点?若是,请写出定点的坐标,并证明你的结论;若不是,请说明理由.
直线与抛物线交于两点A、B,如果弦的长度.⑴求的值;⑵求证:(O为原点)。
在调查男女乘客是否晕机的情况中,已知男乘客晕机为28人,不会晕机的也是28人,而女乘客晕机为28人,不会晕机的为56人,(1)根据以上数据建立一个的列联表;(2)试判断是否有95%的把握认为是否晕机与性别有关?其中为样本容量。
已知,设p:函数在(0,+∞)上单调递减,q:曲线y=x2+(2a 3)x+1与x轴交于不同的两点.若“p且q”为假,“﹁q”为假,求a的取值范围.
已知函数,(1)求在点(1,0)处的切线方程;(2)判断及在区间上的单调性;(3)证明:在上恒成立.
如图,已知四棱锥,底面为菱形,平面,,分别是的中点.(1)证明:;(2)若为上的动点,与平面所成最大角的正切值为,求二面角的余弦值.