已知动点与定点的距离和它到直线的距离之比是常数,记的轨迹为曲线.(I)求曲线的方程;(II)设直线与曲线交于两点,点关于轴的对称点为,试问:当变化时,直线与轴是否交于一个定点?若是,请写出定点的坐标,并证明你的结论;若不是,请说明理由.
如图,在菱形中,沿对角线将△折起,使之间的距离为若分别为线段上的动点 (1)求线段长度的最小值; (2)当线段长度最小时,求直线与平面所成角的正弦值
已知都是正数,求证:
已知曲线的参数方程为为参数),在平面直角坐标系中,以坐标原点为极点,轴的非负半轴极轴建立极坐标系,曲线的极坐标方程为,求与交点的极坐标,其中
已知矩阵的逆矩阵,求曲线在矩阵对应的交换作用下所得的曲线方程.
如图,已知直线为圆的切线,切点为点在圆上,的角平分线交圆于点垂直交圆于点证明: