如图所示:四棱锥P-ABCD底面一直角梯形,BA⊥AD,CD⊥AD,CD=2AB,PA⊥底面ABCD,E为PC的中点.(1)证明:EB∥平面PAD;(2)若PA=AD,证明:BE⊥平面PDC;(3)当PA=AD=DC时,求二面角E-BD-C的正切值.
如图,四边形的外接圆为⊙,是⊙的切线,的延长线与相交于点,. 求证:.
已知常数、、都是实数,函数的导函数为,的解集为. (Ⅰ)若的极大值等于,求的极小值; (Ⅱ)设不等式的解集为集合,当时,函数只有一个零点,求实数的取值范围.
已知、分别是椭圆: 的左、右焦点,点在直线上,线段的垂直平分线经过点.直线与椭圆交于不同的两点、,且椭圆上存在点,使,其中是坐标原点,是实数. (Ⅰ)求的取值范围; (Ⅱ)当取何值时,的面积最大?最大面积等于多少?
如图,在长方体中,,,,是线段的中点. (Ⅰ)求证:平面; (Ⅱ)求平面把长方体 分成的两部分的体积比.
某投资公司年初用万元购置了一套生产设备并即刻生产产品,已知与生产产品相关的各种配套费用第一年需要支出万元,第二年需要支出万元,第三年需要支出万元,……,每年都比上一年增加支出万元,而每年的生产收入都为万元.假设这套生产设备投入使用年,,生产成本等于生产设备购置费与这年生产产品相关的各种配套费用的和,生产总利润等于这年的生产收入与生产成本的差. 请你根据这些信息解决下列问题: (Ⅰ)若,求的值; (Ⅱ)若干年后,该投资公司对这套生产设备有两个处理方案: 方案一:当年平均生产利润取得最大值时,以万元的价格出售该套设备; 方案二:当生产总利润取得最大值时,以万元的价格出售该套设备. 你认为哪个方案更合算?请说明理由.