商店出售茶壶和茶杯,茶壶定价每个20元,茶杯每个5元,该商店推出两种优惠办法:(1)买一个茶壶赠一个茶杯;(2)按总价的92%付款.某顾客需购买茶壶4个,茶杯若干个(不少于4个),若购买茶杯数x个,付款y(元),分别建立两种优惠办法中y与x之间的函数关系式,并讨论该顾客买同样多的茶杯时,两种办法哪一种更优惠。
已知二次函数g(x)对任意x∈R都满足g(x-1)+g(1-x)=x2-2x-1且g(1)=-1,设函数f(x)=g(x+)+ m +(m∈R,x>0). (1)求g(x)的表达式; (2)若存在x∈(0,+∞),使f(x)≤0成立,求实数m的取值范围; (3)设1<m≤e,H(x)=f(x)-(m+1)x, 求证:对于任意x1,x2∈[1,m],恒有|H(x1)-H(x2)|<1.
已知数列的前项和为,且,数列满足,且点在直线上. (Ⅰ)求数列、的通项公式; (Ⅱ)求数列的前项和; (Ⅲ)设,求数列的前项和.
已知在四棱锥P-ABCD中,底面ABCD是矩形,且AD=2,AB=1,PA⊥平面ABCD,E、F分别是线段AB、BC的中点. (1)证明:; (2)判断并说明PA上是否存在点G,使得EG∥平面PFD; (3)若PB与平面ABCD所成的角为45°,求二面角A-PD-F的平面角的余弦值.
已知命题p:x1和x2是方程的两个实根,不等式对任意实数恒成立;命题q:不等式有解,若命题p是真命题,命题q是假命题,求a的取值范围.
“地沟油”严重危害了人民群众的身体健康,某企业在政府部门的支持下,进行技术攻关,新上了一种从“食品残渣”中提炼出生物柴油的项目,经测算,该项目月处理成本y(元)与月处理量x(吨)之间的函数关系可以近似的表示为:且每处理一吨“食品残渣”,可得到能利用的生物柴油价值为200元,若该项目不获利,政府将补贴. (1)当x∈[200,300]时,判断该项目能否获利?如果获利,求出最大利润;如果不获利,则政府每月至少需要补贴多少元才能使该项目不亏损. (2)该项目每月处理量为多少吨时,才能使每吨的平均处理成本最低?