今年我国部分省市出现了人感染H7N9禽流感确诊病例,各地家禽市场受其影响生意冷清.A市虽未发现H7N9疑似病例,但经抽样有20%的市民表示还会购买本地家禽.现将频率视为概率,解决下列问题:(Ⅰ)从该市市民中随机抽取3位,求至少有一位市民还会购买本地家禽的概率;(Ⅱ)从该市市民中随机抽取位,若连续抽取到两位愿意购买本地家禽的市民,或抽取的人数达到4位,则停止抽取,求的分布列及数学期望.
(本小题满分10分) 已知圆及点.(1)若为圆上任一点,求的最大值和最小值;(2)已知点,直线与圆C交于点A、B, 当为何值时取到最小值。
(本小题满分10分)已知直角梯形ABCD和矩形CDEF所在的平面互相垂直,//(1)证明:(2)设二面角的平面角为,求;(3)M为AD的中点,在DE上是否存在一点P,使得MP//平面BCE?若存在,求出DP的长;若不存在,请说明理由。
(本小题满分12分)已知圆,直线(1) 求证:对,直线与圆总有两个不同的交点A、B;(2) 求弦AB的中点M的轨迹方程,并说明其轨迹是什么曲线;(3) 若定点P(1,1)满足,求直线的方程。
(本小题满分9分)如图所示,四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,M、N分别是AB、PC的中点,PA=AD=a.(1)求证:MN∥平面PAD;(2)求证:平面PMC⊥平面PCD.
(本小题满分8分) 直线过点P(4,1),(1)若直线过点Q(-1,6),求直线的方程;(2)若直线在y轴上的截距是在x轴上的截距的2倍,求直线的方程。