已知点O是平面直角坐标系的原点,直线y=﹣x+m+n与双曲线交于两个不同的点A(m,n)(m≥2)和B(p,q).直线y=﹣x+m+n与y轴交于点C,求△OBC的面积S的取值范围.
小明的家庭作业中有这样一道题:“如图,中间用相同的白色正方形瓷砖,四周用相同的黑色长方形瓷砖铺设矩形地面,请观察图形并解答下列问题.在第n个图中,黑、白瓷砖各有多少块.(用含n的代数式表示)”小明做完作业后发现这些图案很美.正好小明爸爸的商铺要装修,准备使用边长为1米的正方形白色瓷砖和长为1米、宽为0.5米的长方形黑色瓷砖来铺地面.于是他建议爸爸按照图案方式进行装修.已知每块白色瓷砖40元,每块黑色瓷砖20元,贴瓷砖的费用每平方米15元.经测算,瓷砖无须切割,且恰好能完成铺设,总费用需7260元.问两种瓷砖各需买多少块?
如图,A,B两地之间有一座山,汽车原来从A地到B地须经C地沿折线A–C-B行驶,全长68 km.现开通隧道后,汽车直接沿直线AB行驶.已知∠A=30°,∠B=45°,则隧道开通后,汽车从A地到B地比原来少走多少千米?(结果精确到0.1 km)(参考数据:,)
南京市体育中考现场考试男生有三项内容:三 分钟跳绳、1000米跑(二选一);引体向上、实心球(二选一);立定跳远、50米跑(二选一).小明三分钟跳绳是强项,他决定必选,其它项目在平时测试中成绩完全相同,他决定随机选择.(1)用画树状图或列表的方法求:①他选择的项目是三分钟跳绳、实心球、立定跳远的概率是 多少?②他选择的项目中有立定跳远的概率是多少?(友情提醒:各个项目可用A、B、C、…等符号来代表可简化解答过程)(2)如果他决定用掷硬币的方法确定除三分钟跳绳外的其它两项考试项目,请你帮他设计一个合理的方案.
某中学九(1)班同学积极响应“阳光体育工程”的号召,利用课外活动时间积极参加体育锻炼,每位同学从长跑、篮球、铅球、立定跳远中选一项进行训练,训练前后都进行了测试.现将项目选择情况及训练后篮球定时定点投篮测试成绩整理后作出如下统计图表.请你根据图表中的信息回答下列问题:(1)训练后篮球定时定点投篮平均每个人的进球数为 ;(2)选择长跑训练的人数占全班人数的百分比是 ,该班共有同学 人;(3)根据测试资料,训练后篮球定时定点投篮的人均进球数比训练之前人均进球数增加25% ,请求出参加训练之前的人均进球数.
如图,将□ABCD的边DC延长到点E,使CE=DC,连接AE,交BC于点F.(1)求证:△ABF≌△ECF;(2)若∠AFC=2∠ABC,连接AC、BE.求证:四边形ABEC是矩形.