已知曲线的参数方程为是参数,是曲线与轴正半轴的交点.以坐标原点为极点,轴正半轴为极轴建立极坐标系,求经过点与曲线只有一个公共点的直线的极坐标方程.
如图,直三棱柱ABC﹣A 1B 1C 1的底面为直角三角形,两直角边AB和AC的长分别为4和2,侧棱 A A 1 的长为5.
(1)求三棱柱ABC﹣A 1B 1C 1的体积;
(2)设M是BC中点,求直线A 1M与平面ABC所成角的大小.
设 a n 是首项为 a 1 ,公差为 d 的等差数列, {b n } 是首项 b 1 ,公比为q的等比数列
(1) 设 a 1 =0 , b 1 =1,q=2 , 若 | a n -b n | ≤ b 1 对n=1,2,3,4均成立,求d的取值范围
(2) 若 a 1 =b 1 > 0 , m ∈ N * , q ∈ ( 1 , 2 m ] 证明:存在 d ∈ R ,使得 | a n -b n | ≤ b 1 对n=2,3,…, m+ 1 均成立,并求 d 的取值范围(用 b 1 , m , q 表示)。
记 f ' ( x ) , g ' ( x ) 分别为函数 f ( x ) , g ( x ) 的导函数.若存在 x 0 ∈ R ,满足 f ( x 0 ) = g ( x 0 ) 且 f ' ( x 0 ) = g ' ( x 0 ) ,则称 x 0 为函数 f ( x ) 与 g ( x ) 的一个“S点”.
(1)证明:函数 f ( x ) = x 与 g ( x ) = x 2 + 2 x - 2 不存在“S点”.
(2)若函数 f ( x ) = a x 2 - 1 与 g ( x ) = ln x 存在“S点”,求实数 a 的值.
(3)已知函数 f ( x ) = - x 2 + a , g ( x ) = b e x x ,对任意 a > 0 ,判断是否存在 b > 0 ,使函数 f ( x ) 与 g ( x ) 在区间 ( 0 , + ∞ ) 内存在“S”点,并说明理由.
如图,在平面直角坐标系 xOy 中,椭圆C过点 ( 3 , 1 2 ) ,焦点 F 1 ( - 3 , 0 ) , F 2 ( 3 , 0 ) ,圆O的直径为 F 1 F 2 .
(1)求椭圆C及圆O的方程;
(2)设直线 l 与圆O相切于第一象限内的点P.
①若直线 l 与椭圆C有且只有一个公共点,求点P的坐标;
②直线 l 与椭圆C交于A、B两点.若 ΔOAB 的面积为 2 6 7 ,求直线 l 的方程.
某农场有一块农田,如图所示,它的边界由圆 O 的一段圆弧 MPN ( P 为此圆弧的中点)和线段 MN 构成,已知圆 O 的半径为40米,点 P 到 MN 的距离为50米,先规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形 ABCD .大棚Ⅱ内的地块形状为 ΔCDP 要求 AB 均在线段 MN 上, C , D 均在圆弧上,设 OC 与 MN 所成的角为 θ
(1)用 θ 分别表示矩形 A B C D 和 Δ C D P 的面积,并确定 sin θ 的取值范围
(2)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为 4 : 3 .求当 θ 为何值时,能使甲、乙两种蔬菜的年总产值最大.