如图,直线y=k1x+b(k1≠0)与双曲线(k2≠0)相交于A(1,m)、B(﹣2,﹣1)两点.(1)求直线和双曲线的解析式.(2)若A1(x1,y1),A2(x2,y2),A3(x3,y3)为双曲线上的三点,且x1<x2<0<x3,请直接写出y1,y2,y3的大小关系式.
如图,正方形 ABCD的边长为3 cm, P, Q分别从 B, A出发沿 BC, AD方向运动, P点的运动速度是1 cm/秒, Q点的运动速度是2 cm/秒,连接 A, P并过 Q作 QE⊥ AP垂足为 E.
(1)求证:△ ABP∽△ QEA;
(2)当运动时间 t为何值时,△ ABP≌△ QEA;
(3)设△ QEA的面积为 y,用运动时刻 t表示△ QEA的面积 y(不要求考 t的取值范围).(提示:解答(2)(3)时可不分先后)
如图,在平面直角坐标系 xOy中,反比例函数 y= m x 的图象与一次函数 y= k( x﹣2)的图象交点为 A(3,2), B( x, y).
(1)求反比例函数与一次函数的解析式及 B点坐标;
(2)若 C是 y轴上的点,且满足△ ABC的面积为10,求 C点坐标.
如图,在平面直角坐标系中, O(0,0), A(0,﹣6), B(8,0)三点在⊙ P上, M为劣弧的 OB ⏜ 中点.
(1)求圆的半径及圆心 P的坐标;
(2)求证: AM是∠ OAB的平分线;
(3)连接 BM并延长交 y轴于点 N,求 N, M点的坐标.
如图,一块长5米宽4米的地毯,为了美观设计了两横、两纵的配色条纹(图中阴影部分),已知配色条纹的宽度相同,所占面积是整个地毯面积的 17 80 .
(1)求配色条纹的宽度;
(2)如果地毯配色条纹部分每平方米造价200元,其余部分每平方米造价100元,求地毯的总造价.
为有效开发海洋资源,保护海洋权益,我国对南海诸岛进行了全面调查,一测量船在 A岛测得 B岛在北偏西30°, C岛在北偏东15°,航行100海里到达 B岛,在 B岛测得 C岛在北偏东45°,求 B, C两岛及 A, C两岛的距离( ≈2.45,结果保留到整数)