已知抛物线y=a(x﹣3)2+2经过点(1,﹣2).(1)求a的值;(2)若点A(m,y1)、B(n,y2)(m<n<3)都在该抛物线上,试比较y1与y2的大小.
已知三元一次方程组. (1)求该方程组的解; (2)若该方程组的解使ax+2y+z<0成立,求整数a的最大值.
如图,∠BAP+∠APD=180°,∠1=∠2,求证:∠E=∠F.
在求1+2+22+23+24+25+26的值时,小明发现:从第二个加数起每一个加数都是前一个加数的2倍,于是他设:S=1+2+22+23+24+25+26①然后在①式的两边都乘以2,得:2S=2+22+23+24+25+26+27 ②;②﹣①得2S﹣S=27﹣1,S=27﹣1,即1+2+22+23+24+25+26=27﹣1. (1)求1+3+32+33+34+35+36的值; (2)求1+a+a2+a3+…+a2013(a≠0且a≠1)的值.
(1)解不等式:; (2)求不等式组的整数解.
(1)计算:(﹣a)7÷(﹣a)4×(﹣a)3; (2)利用乘法公式计算:2014×2016﹣20152; (3)因式分解:x3﹣4x.