已知函数.(1)若在定义域上为增函数,求实数的取值范围;(2)求函数在区间上的最小值.
如图,是的内接三角形,PA是圆O的切线,切点为A,PB交AC于点E,交圆O于点D,PA=PE,,PD=1,DB=8.(1)求的面积;(2)求弦AC的长.
已知函数.(1)当时,证明:当时,;(2)当时,证明:.
如图为椭圆C:的左、右焦点,D,E是椭圆的两个顶点,椭圆的离心率,的面积为.若点在椭圆C上,则点称为点M的一个“椭圆”,直线与椭圆交于A,B两点,A,B两点的“椭圆”分别为P,Q.(1)求椭圆C的标准方程;(2)问是否存在过左焦点的直线,使得以PQ为直径的圆经过坐标原点?若存在,求出该直线的方程;若不存在,请说明理由.
如图,在四棱柱中,底面ABCD和侧面都是矩形,E是CD的中点,,.(1)求证:;(2)若平面与平面所成的锐二面角的大小为,求线段的长度.
由某种设备的使用年限(年)与所支出的维修费(万元)的数据资料算得如下结果,,,,.(1)求所支出的维修费y对使用年限x的线性回归方程;(2)①判断变量x与y之间是正相关还是负相关;②当使用年限为8年时,试估计支出的维修费是多少.(附:在线性回归方程中,),,其中,为样本平均值.)