已知等差数列的公差,它的前项和为,若,且成等比数列.(1) 求数列的通项公式;(2)设数列的前项和为,求证:.
已知动点与平面上两定点、连线的斜率的积为定 值. (1)求动点的轨迹方程;(2)设直线与曲线交于、两点,当||=时,求直线的方程.
若抛物线的顶点在原点,其准线方程过双曲线-=1(,)的一个焦点,如果抛物线与双曲线交于(,),(,-),求两曲线的标准方程.
已知椭圆方程为,、为其左右焦点,点为椭圆上一点,且,. (1)求的面积. (2)直线过点与椭圆交于、两点,若为弦的中点,求的方程.
已知:方程有两个不等的负根;:方程无实根.若或为真,且为假,求的取值范围.
已知函数图像上点处的切线方程与直线平 行(其中), (I)求函数的解析式; (II)求函数上的最小值; (III)对一切恒成立,求实数的取值范围.