数列满足,且.(1) 求数列的通项公式; (2) 令,当数列为递增数列时,求正实数的取值范围.
如图,A,B,C是椭圆M:上的三点,其中点A是椭圆的右顶点,BC过椭圆M的中心,且满足AC⊥BC,BC=2AC。 (1)求椭圆的离心率; (2)若y轴被△ABC的外接圆所截得弦长为9,求椭圆方程。
如图,在正方体中,分别为的中点. (1)求证:平面; (2)求证:平面平面.
在平面直角坐标系中,设锐角的始边与轴的非负半轴重合,终边与单位圆交于点,将射线绕坐标原点按逆时针方向旋转后与单位圆交于点. 记. (1)求函数的值域; (2)设的角所对的边分别为,若,且,,求.
已知数列满足,且不含数字,顺序为按从小到大排列,求证:
(本小题满分10分)已知四棱锥的底面为直角梯形,底面,且是的中点. (1)证明:平面平面; (2)求与所成角的余弦值; (3)求平面与平面所成二面角(锐角)的余弦值.