((本小题满分12分)如图,斜三棱柱-ABC的底面是边长为2的正三角形,顶点在底面上的射影是△ABC的中心,与AB的夹角是45°(1)求证:⊥平面;(2)求此棱柱的侧面积 。
已知正△ABC的边长为, CD是AB边上的高,E、F分别是AC和BC边的中点,现将△ABC沿CD翻折成直二面角A-DC-B,如图所示.(1)试判断折叠后直线AB与平面DEF的位置关系,并说明理由;(2)若棱锥E-DFC的体积为,求的值;(3)在线段AC上是否存在一点P,使BP⊥DF?如果存在,求出的值;如果不存在,请说明理由.
已知与两平行直线都相切,且圆心在直线上,(Ⅰ)求的方程;(Ⅱ)斜率为2的直线与相交于两点,为坐标原点且满足,求直线的方程。
【原创】如图,在正方体中 ①求证:平面; ②求证:与平面的交点是的中心(正三角形五心合一,统称中心)
【改编】如图,在三棱锥A-BCD中,底面BCD是边长为2的等边三角形,侧棱AB=AD=,AC=2,O、E、F分别是BD、BC、AC的中点.(1)求证:EF∥平面ABD;(2)求证:AO⊥平面BCD;(3)求三棱锥的体积.
如图,圆内有一点P(—1,2),AB为过点P的弦。(1)当弦AB的倾斜角为135°时,求AB所在的直线方程及|AB|;(2)当弦AB被点P平分时,写出直线AB的方程。