(本小题满分12分)已知各项均为正数的数列中,,是数列的前n项和,对任意的,有(1)求常数的值;(2)求数列的通项公式;(3)记,求数列的前n项和。
已知,当k为何值时. (1)与垂直; (2)与平行,平行时它们是同向还是反向.
已知抛物线,直线l与抛物线交于A、B,且,点在AB上,又. (1)求直线l的方程; (2)求a的值; (3)求△OAB的面积.
如图,在棱长是1的正方体ABCD-A1B1C1D1中,点E,F,G分别是DD1,BD,BB1的中点. (1)求证:EF⊥CF; (2)求EF与CG所成的角的余弦值; (3)求三棱锥G-CEF的体积.
已知椭圆C:,点M(2,1). (1)求椭圆C的焦点坐标和离心率; (2)求通过M点且被这点平分的弦所在的直线方程.
已知点A(-1,0),B(1,0),直线AM,BM相交于点M,且它们的斜率之积是2,求点M的轨迹方程,并指出该轨迹曲线的离心率.