已知椭圆,抛物线的焦点均在轴上,的中心和的顶点均为原点,每条曲线上取两个点,将其坐标记录于表中:
(1)求,的标准方程;(2)设斜率不为0的动直线与有且只有一个公共点,且与的准线交于,试探究:在坐标平面内是否存在定点,使得以为直径的圆恒过点?若存在,求出点的坐标,若不存在,请说明理由.
在某次测验中,有6位同学的平均成绩为75分.用xn表示编号为n(n=1,2,…,6)的同学所得的成绩,且前5位同学的成绩如下: 编号n: 1, 2, 3, 4, 5 成绩xn:70,76,72,70,72 (1)求第6位同学的成绩x6,及这6位同学成绩的标准差s; (2)若从前5位同学中,随机地选取2位同学,求恰有1位同学的成绩在区间(68,75)中的概率.
有一种密英文的明文(真实文)按字母分解,其中英文的a,b,c,…,z的26个字母(不分大小写),依次对应1,2,3,…,26这26个自然数,见如下表格:
给出如下变换公式:(x∈N,1≤x≤26,x不能被2整除)+13(x∈N,1≤x≤26,x能被2整除) 将明文转换成密文,如8→+13=17,即h变成q;如5→=3,即e变成c. ①按上述规定,将明文good译成的密文是什么? ②按上述规定,若将某明文译成的密文是shxc,那么原来的明文是什么?
已知函数f(x)=x3 +x(x∈R). (1)指出f(x)的奇偶性及单调性,并说明理由; (2)若a、b、c∈R,且a+b>0,b+c>0,c+a>0,试判断f(a)+f(b)+f(c)的符号.
设命题p:“函数f(x)=ax+1在(-1,1)上存在一个零点”,命题q:“函数f(x)=x2-2ax在(1,+∞)上单调递增”.若“p∨q”为真,“p∧q”为假,求实数a的取值范围.
已知函数, 若2)=1,求 (1) 实数的值; (2)函数的值; (3)不等式的解集.