已知椭圆,抛物线的焦点均在轴上,的中心和的顶点均为原点,每条曲线上取两个点,将其坐标记录于表中:
(1)求,的标准方程;(2)设斜率不为0的动直线与有且只有一个公共点,且与的准线交于,试探究:在坐标平面内是否存在定点,使得以为直径的圆恒过点?若存在,求出点的坐标,若不存在,请说明理由.
已知函数. (1)若a=2,求曲线y=f(x)在x=1处的切线方程; (2)求f(x)的单调区间; (3)设,若对任意,均存在,使得,求a的取值范围.
已知椭圆E:的离心率,并且经过定点 (1)求椭圆E 的方程; (2)问是否存在直线y=-x+m,使直线与椭圆交于A, B 两点,满足,若存在求m 值,若不存在说明理由.
一个多面体的直观图及三视图如图所示,其中M , N 分别是AF、BC 的中点, (1)求证:MN // 平面CDEF ; (2)求二面角A-CF-B 的余弦值;
一企业某次招聘新员工分笔试和面试两部分,人力资源部经理把参加笔试的40名学生的成绩分组:第1组[75,80),第2组[80,85),第3组[85,90),第4组[90,95),第5组[95,100),得到频率分布直方图如图所示: (1)分别求成绩在第4,5组的人数; (2)若该经理决定在笔试成绩较高的第3,4,5组中用分层抽样抽取6名进入面试, ①已知甲和乙的成绩均在第3组,求甲和乙同时进入面试的概率; ②若经理决定在这6名学生中随机抽取2名学生接受考官D的面试,设第4组中有X名学生被考官D面试,求X的分布列和数学期望.
(本小题满分12分) 已知数列是公差大于零的等差数列,数列为等比数列,且 (1)求数列和的通项公式 (2)设,求数列前n项和.