如图:A、B两城相距100 ,某天燃气公司计划在两地之间建一天燃气站D 给A、B两城供气.已知D地距A城,为保证城市安全,天燃气站距两城市的距离均不得少于10.已知建设费用(万元)与A、B两地的供气距离()的平方和成正比,当天燃气站D距A城的距离为40时, 建费用为1300万元.(供气距离指天燃气站距到城市的距离)(1)把建设费用(万元)表示成供气距离()的函数,并求定义域;(2)天燃气供气站建在距A城多远,才能使建设供气费用最小,最小费用是多少?
在一个盒子里装有6枝圆珠笔,其中3枝一等品,2枝二等品,1枝三等品. (1)从盒子里任取3枝恰有1枝三等品的概率多大?; (2)从盒子里任取3枝,设为取出的3枝里一等品的枝数,求的分布列及数学期望.
已知函数 (1)当时,求的最大值及相应的x值; (2)利用函数y=sin的图象经过怎样的变换得到f(x)的图象.
如果项数均为的两个数列满足且集合,则称数列是一对“项相关数列”. (Ⅰ)设是一对“4项相关数列”,求和的值,并写出一对“项 关数列”; (Ⅱ)是否存在“项相关数列”?若存在,试写出一对;若不存在,请说明理由; (Ⅲ)对于确定的,若存在“项相关数列”,试证明符合条件的“项相关数列”有偶数对.
已知函数,. (Ⅰ)求函数的单调递增区间; (Ⅱ)设点为函数的图象上任意一点,若曲线在点处的切线的斜率恒大于, 求的取值范围.
已知函数,. (Ⅰ)若函数在上至少有一个零点,求的取值范围; (Ⅱ)若函数在上的最大值为,求的值.