已知极坐标系的极点为直角坐标系的原点,极轴为x轴的正半轴,两种坐标系中的长度单位相同,已知曲线的极坐标方程为.(1)求的直角坐标方程;(2)直线(为参数)与曲线C交于,两点,与轴交于,求的值.
已知等差数列的首项为,公差为,数列满足,.(1)求数列与的通项公式;(2)记,求数列的前项和.(注:表示与的最大值.)
如图,在棱长为的正方体中,点是棱的中点,点在棱上,且满足.(1)求证:;(2)在棱上确定一点,使、、、四点共面,并求此时的长;(3)求几何体的体积.
已知函数的图象经过点.(1)求实数的值;(2)求函数的最小正周期与单调递增区间.
已知某种同型号的瓶饮料中有瓶已过了保质期.(1)从瓶饮料中任意抽取瓶,求抽到没过保质期的饮料的概率;(2)从瓶饮料中随机抽取瓶,求抽到已过保质期的饮料的概率.
已知函数(其中为自然对数的底数).(1)求函数的单调区间; (2)定义:若函数在区间上的取值范围为,则称区间为函数的“域同区间”.试问函数在上是否存在“域同区间”?若存在,求出所有符合条件的“域同区间”;若不存在,请说明理由.