已知极坐标系的极点为直角坐标系的原点,极轴为x轴的正半轴,两种坐标系中的长度单位相同,已知曲线的极坐标方程为.(1)求的直角坐标方程;(2)直线(为参数)与曲线C交于,两点,与轴交于,求的值.
已知椭圆的离心率为,左、右焦点分别为E、F,椭圆上的点P满足,且△PEF的面积为1,抛物线经过点(2,2).(Ⅰ)分别求椭圆与抛物线的方程;(Ⅱ)已知为轴上一点,倾斜角为的直线交椭圆于A、B两点,线段AB的中点为M,直线QM交抛物线于C、D两点,四边形ACBD的面积记为S,若对任意直线l,都存在点Q,使得,求实数的取值范围.
已知M为抛物线上一动点,为其对称轴上一点,直线MA与抛物线的另一个交点为N.当A为抛物线的焦点且直线MA与其对称轴垂直时,△OMN的面积为.(Ⅰ)求抛物线的标准方程;(Ⅱ)记,若t的值与M点位置无关, 则称此时的点A为“稳定点”,试求出所有“稳定点”,若没有,请说明理由.
已知动点P与两定点、连线的斜率之积为(Ⅰ)求动点P的轨迹C的方程;(Ⅱ)若过点的直线l交轨迹C于M、N两点,且轨迹C上存在点E使得四边形OMEN(O为坐标原点)为平行四边形,求直线l的方程.
为捍卫钓鱼岛及其附属岛屿的领土主权,中国派出海警“2102”、“海警2307”和“海警2308”海警船编队在钓鱼岛领海巡航。某日,正巡逻在A处的海警“2102”突然发现来自P处的疑似敌舰的某信号,发现信号时“海警2307”和“海警2308”正分别位于如图所示的B、C两处,其中在的正东方向相距千米处,在的北偏西30°方向相距千米处。由于、比距更远,因此,4秒后、才同时发现这一信号(该信号的传播速度为每秒千米),试确定疑似敌舰相对于A的位置.
已知在直角坐标系中,曲线为参数,,在以O为极点,x轴正半轴为极轴的极坐标系中,曲线,曲线.(Ⅰ)求C2与C3交点的直角坐标;(Ⅱ)若C2与C1相交于点A,C3与C1相交于点B,求的值.