已知极坐标系的极点为直角坐标系的原点,极轴为x轴的正半轴,两种坐标系中的长度单位相同,已知曲线的极坐标方程为.(1)求的直角坐标方程;(2)直线(为参数)与曲线C交于,两点,与轴交于,求的值.
(本小题满分13分)某高校在上学期依次举行了“法律、环保、交通”三次知识竞赛活动,要求每位同学至少参加一次活动.该高校2014级某班50名学生在上学期参加该项活动的次数统计如图所示(1)从该班中任意选两名学生,求他们参加活动次数不相等的概率.(2)从该班中任意选两名学生,用表示这两人参加活动次数之差的绝对值,求随机变量的分布列及数学期望.(3)从该班中任意选两名学生,用表示这两人参加活动次数之和,记“函数在区间(3,5)上有且只有一个零点”为事件A,求事件A发生的概率.
(本小题满分10分)以下是搜集到的开封市祥符区新房屋的销售价格(万元)和房屋的面积()的数据: 已知变量和线性相关。
(Ⅰ)求、,及线性回归方程; (Ⅱ)据(Ⅰ)的结果估计当房屋面积为时的销售价格。
(本小题满分9分)已知是复数,若为实数(为虚数单位),且为纯虚数.(1)求复数;(2)若复数在复平面上对应的点在第四象限,求实数的取值范围
(本小题满分13分)已知函数..(Ⅰ)若,求函数的最大值;(Ⅱ)令,求函数的单调区间;(Ⅲ)若,正实数满足,证明.
(本小题满分13分)甲、乙、丙三人参加了一家公司的招聘面试,面试合格者可正式签约,甲表示只要面试合格就签约.乙、丙则约定:两人面试都合格就一同签约,否则两人都不签约.设甲、乙、丙面试合格的概率分别是,,,且面试是否合格互不影响.求:(Ⅰ)至少有1人面试合格的概率;(Ⅱ)签约人数的分布列和数学期望.