已知极坐标系的极点为直角坐标系的原点,极轴为x轴的正半轴,两种坐标系中的长度单位相同,已知曲线的极坐标方程为.(1)求的直角坐标方程;(2)直线(为参数)与曲线C交于,两点,与轴交于,求的值.
如图所示,等腰△ABC的底边,高CD=3,点E是线段BD上异于点B,D的动点,点F在BC边上,且EF⊥AB,现沿EF将△BEF折起到△PEF的位置,使PE⊥AC,记BE=x,V(x)表示四棱锥P﹣ACFE的体积.(1)求V(x)的表达式;(2)当x为何值时,V(x)取得最大值?(3)当V(x)取得最大值时,求异面直线AC与PF所成角的余弦值.
已知向量=(2sinx,cosx),=(sinx,2sinx),函数f(x)=·.(1)求f(x)的单调递增区间;(2)若不等式f(x)≥m对x∈[0,]都成立,求实数m的最大值.
已知函数(a是常数,a∈R)(1)当a=1时求不等式的解集.(2)如果函数恰有两个不同的零点,求a的取值范围.
已知曲线(为参数),曲线,将的横坐标伸长为原来的2倍,纵坐标缩短为原来的得到曲线.(1)求曲线的普通方程,曲线的直角坐标方程;(2)若点P为曲线上的任意一点,Q为曲线上的任意一点,求线段的最小值,并求此时的P的坐标.
如图,在中,是的∠A的平分线,圆经过点与切于点,与相交于,连结,.(1)求证:; (2)求证:.