已知极坐标系的极点为直角坐标系的原点,极轴为x轴的正半轴,两种坐标系中的长度单位相同,已知曲线的极坐标方程为.(1)求的直角坐标方程;(2)直线(为参数)与曲线C交于,两点,与轴交于,求的值.
已知线段AB的两个端点A、B分别在轴、y轴上滑动,,点M满足.(I )求动点M的轨迹E的方程;(II)若曲线E的所有弦都不能被直线垂直平分,求实数k的取值范围.
设是公比大于1的等比数列,为数列的前n项和,已知,且成等差数列.(I )求数列的通项公式;(II)若,求和:
如图,三棱锥SABC中,SC丄底面ABC,,,M为SB中点,N在AB上,满足(I)求点N到平面SBC的距离;(II)求二面角C-MN-B的大小.
现有三种基本电子模块,电流能通过的概率都是P,电流能否通过各模块相互独立.已知中至少有一个能通过电流的概率为0.999.现由该电子模块组装成某预警系统M(如图所示),针对系统M而言,只要有电流通过该系统就能正常工作.(1)求P值(II)求预警系统M正常工作的概率
在ΔACB中,已知,,设.(I)用θ表示|CA|;(II)求.的单调递增区间.