首页 / 高中数学 / 试题详细
  • 更新 2022-09-03
  • 科目 数学
  • 题型 解答题
  • 难度 困难
  • 浏览 1550

如图,已知曲线,曲线,P是平面上一点,若存在过点P的直线与都有公共点,则称P为“C1—C2型点”.

(1)在正确证明的左焦点是“C1—C2型点”时,要使用一条过该焦点的直线,试写出一条这样的直线的方程(不要求验证);
(2)设直线有公共点,求证,进而证明原点不是“C1—C2型点”;
(3)求证:圆内的点都不是“C1—C2型点”.

登录免费查看答案和解析

如图,已知曲线,曲线,P是平面上一点,若存在过点P的直线与都