已知A、B、C是椭圆W:上的三个点,O是坐标原点.(I)当点B是W的右顶点,且四边形OABC为菱形时,求此菱形的面积;(II)当点B不是W的顶点时,判断四边形OABC是否可能为菱形,并说明理由。
(本小题满分12分)数列中,,前项和满足。(1)求数列数列的通项公式,以及前项和;(2)若,,成等差数列,求实数的值。
(本小题满分14分)已知函数(是自然对数的底数)(1)求的最小值;(2)不等式的解集为P, 若 求实数的取值范围;(3)已知,是否存在等差数列和首项为公比大于0的等比数列,使数列的前n项和等于
(本题14分)如图,椭圆长轴端点为,为椭圆中心,为椭圆的右焦点,且,. (1)求椭圆的标准方程;(2)记椭圆的上顶点为,直线交椭圆于两点,问:是否存在直线,使点恰为的垂心?若存在,求出直线的方程;若不存在,请说明理由.
(本小题共13分) 如图,在三棱锥中,底面ABC,点、分别在棱上,且 (Ⅰ)求证:平面;(Ⅱ)当为的中点时,求与平面所成角的大小的余弦值;(Ⅲ)是否存在点,使得二面角为直二面角?并说明理由.
A处一缉私艇发现在北偏东45°方向,距离12 n mile的海面C处有一走私船正以10 n mile/h的速度沿东偏南15°方向逃窜.缉私艇的速度为14 n mile/h,若要在最短的时间内追上该走私船,缉私艇应沿北偏东45°+α的方向去追,求追击所需的时间和α角的正弦值.