已知过点的直线与抛物线交于两点,为坐标原点.(1)若以为直径的圆经过原点,求直线的方程;(2)若线段的中垂线交轴于点,求面积的取值范围.
(本小题满分14分)如图,在四棱锥中,∥,,,⊥,⊥,为的中点.求证:(1)∥平面;(2)⊥平面.
(本小题满分14分)在中,角A,B,C的对边分别为a,b,c,且(1)求角C的大小;(2)求的最大值.
如图,,是抛物线(为正常数)上的两个动点,直线AB与x轴交于点P,与y轴交于点Q,且(Ⅰ)求证:直线AB过抛物线C的焦点;(Ⅱ)是否存在直线AB,使得若存在,求出直线AB的方程;若不存在,请说明理由。
已知函数(Ⅰ)当a=1时,求函数在区间上的最小值和最大值;(Ⅱ)若函数在区间上是增函数,求实数a的取值范围。
如图,是棱长为1的正方体,四棱锥中,平面,(Ⅰ)求证:(Ⅱ)求直线与平面所成角的正切值。