如图,,是抛物线(为正常数)上的两个动点,直线AB与x轴交于点P,与y轴交于点Q,且(Ⅰ)求证:直线AB过抛物线C的焦点;(Ⅱ)是否存在直线AB,使得若存在,求出直线AB的方程;若不存在,请说明理由。
等差数列{an}的各项均为正数,a1=3,前n项和为Sn,{bn}为等比数列,b1=1,且b2S2=64,b3S3=960.(1)求an与bn;(2)求++…+.
已知函数在区间上的最大值为2.(1)求常数m的值;(2)在△ABC中,角A、B、C所对的边是a、b、c,若,△ABC面积为.求边长a.
在平面直角坐标系中,为坐标原点,已知曲线上任意一点(其中)到定点的距离比它到轴的距离大1.(1)求曲线的轨迹方程;(2)若过点的直线与曲线相交于A、B不同的两点,求的值;(3)若曲线上不同的两点、满足,求的取值范围.
在平面直角坐标系中,点与点关于原点对称,是动点,且直线与的斜率之积等于.(Ⅰ)求动点的轨迹方程; (Ⅱ)设直线和与直线分别交于两点,问:是否存在点使得与的面积相等?若存在,求出点的坐标;若不存在,请说明理由.
已知函数(且).(Ⅰ)若,试求的解析式;(Ⅱ)令,若,又的图像在轴上截得的弦的长度为,且,试比较、的大小.