甲、乙两人参加普法知识竞赛,共有10道不同的题目,其中选择题6道,判断题4道,甲、乙两人各抽一道(不重复).(1)甲抽到选择题,乙抽到判断题的概率是多少?(2)甲、乙二人中至少有一人抽到选择题的概率是多少?
(本小题满分12分) 已知函数,其定义域为(),设. (Ⅰ)试确定的取值范围,使得函数在上为单调函数; (Ⅱ)试判断的大小并说明理由; (Ⅲ)求证:对于任意的,总存在,满足,并确定这样的的个数.
(本小题10分) 已知抛物线在x轴的正半轴上,过M的直线与C相交于A、B两点,O为坐标原点。 (I)若m=1,且直线的斜率为1,求以AB为直径的圆的方程; (II)问是否存在定点M,不论直线绕点M如何转动,使得恒为定值。
(本小题9分) 如图所示,在直角梯形ABCP中,AB=BC=3,AP=7,CD⊥AP,现将沿折线CD折成60°的二面角P—CD—A,设E,F,G分别是PD,PC,BC的中点。 (I)求证:PA//平面EFG; (II)若M为线段CD上的一个动点,问当M在什么位置时,MF与平面EFG所成角最大。
(本小题8分) 数列满足,先计算前4项后,猜想的表达式,并用数学归纳法证明.
已知函数有下列性质:“若,则存在,使得”成立 (I)证明:若,则唯一存在,使得; (II) 设A、B、C是函数图象上三个不同的点,试判断△ABC的形状,并说明理由