已知函数 f x = x 2 + 2 x + a , x < 0 ln x , x > 0 ,其中 a 是实数,设 A x 1 , f x 1 , B x 2 , f x 2 为该函数图象上的点,且 x 1 < x 2 . (I)指出函数 f x 的单调区间; (II)若函数 f x 的图象在点 A , B 处的切线互相垂直,且 x 2 < 0 ,求 x 2 - x 1 的最小值; (III)若函数 f x 的图象在点 A , B 处的切线重合,求 a 取值范围.
设a>0且a≠1, (x≥1) (Ⅰ)求函数f(x)的反函数f-1(x)及其定义域; (Ⅱ)若,求a的取值范围。
设函数,已知是奇函数。 (Ⅰ)求、的值。 (Ⅱ)求的单调区间与极值。
对于定义域为的函数,如果同时满足以下三条:①对任意的,总有;②;③若,都有成立,则称函数为理想函数. (1) 若函数为理想函数,求的值; (2)判断函数是否为理想函数,并予以证明; (3) 若函数为理想函数,假定,使得,且,求证:.
设数列的首项为,前n项和满足关系式: 1)求证: 数列是等比数列; 2)设数列的公比为f(t),作数列,使得,求:b及; 3)求和。
已知是定义在上的不恒为零的函数,且对定义域内的任意x, y, f (x)都满足. (1)求f (1)、f (-1)的值; (2)判断f (x)的奇偶性,并说明理由; (3)证明:(为不为零的常数)