已知函数 f x = x 2 + 2 x + a , x < 0 ln x , x > 0 ,其中 a 是实数,设 A x 1 , f x 1 , B x 2 , f x 2 为该函数图象上的点,且 x 1 < x 2 . (I)指出函数 f x 的单调区间; (II)若函数 f x 的图象在点 A , B 处的切线互相垂直,且 x 2 < 0 ,求 x 2 - x 1 的最小值; (III)若函数 f x 的图象在点 A , B 处的切线重合,求 a 取值范围.
已知复数z1=m+(4-m2)i(m∈R),z2=2cos+(+3sin)i (∈R).若z1=z2,求的取值范围.
已知m∈R,复数z=+(m2+2m-3)i,当m为何值时,(1)z∈R;(2)z是纯虚数;(3)z对应的点位于复平面第二象限;(4)z对应的点在直线x+y+3=0上.
是否存在常数a、b、c使等式12+22+32+…+n2+(n-1)2+…+22+12=an(bn2+c)对于一切n∈N*都成立,若存在,求出a、b、c并证明;若不存在,试说明理由.
数列{an}满足Sn=2n-an(n∈N*). (1)计算a1,a2,a3,a4,并由此猜想通项公式an; (2)用数学归纳法证明(1)中的猜想.
用数学归纳法证明: 1+++…+≥(n∈N*).