已知抛物线,过轴上一点的直线与抛物线交于点两点。证明,存在唯一一点,使得为常数,并确定点的坐标。
在平面直角坐标系xOy中,以O为极点,X轴的正半轴为极轴,取与直角坐标系相同的长度单位建立极坐标系.曲线C1的参数方程为:(为参数);射线C2的极坐标方程为:,且射线C2与曲线C1的交点的横坐标为(I )求曲线C1的普通方程;(II)设A、B为曲线C1与y轴的两个交点,M为曲线C1上不同于A、B的任意一点,若直线AM与MB分别与x轴交于P,Q两点,求证|OP|.|OQ|为定值.
已知四边形ACBE,AB交CE于D点,,BE2=DE-EC.(I)求证:;(II)求证:A、E、B、C四点共圆.
已知函数(a ,bR,e为自然对数的底数),.(I )当b=2时,若存在单调递增区间,求a的取值范围;(II)当a>0 时,设的图象C1与的图象C2相交于两个不同的点P、Q,过线段PQ的中点作x轴的垂线交C1于点,求证.
在平面直角坐标系中,已知直线l:y=-1,定点F(0,1),过平面内动点P作PQ丄l于Q点,且•(I )求动点P的轨迹E的方程;(II)过点P作圆的两条切线,分别交x轴于点B、C,当点P的纵坐标y0>4时,试用y0表示线段BC的长,并求ΔPBC面积的最小值.
在三棱柱ABC-A1B1C1中,侧面ABB1A1为矩形,AB=1,,D为AA1中点,BD与AB1交于点0,C0丄侧面ABB1A1(I )证明:BC丄AB1;(II)若OC=OA,求二面角C1-BD-C的余弦值.