某商场计划购进A,B两种新型节能台灯共100盏,这两种台灯的进价、售价如表所示:
(1)若商场预计进货款为3500元,则这两种台灯各购进多少盏?(2)若商场规定B型台灯的进货数量不超过A型台灯数量的3倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元?
因式分解:(每小题4分,共8分)(1) (2)
如图,已知一次函数y=kx+b的图象交反比例函数(x>0)图象于点A、B,交x轴于点C.(1)求m的取值范围;(2)若点A的坐标是(2,-4),且,求m的值和C点的坐标;
如图,△ABC中,∠C=90°,AC=3cm,BC=4cm,动点P从点B出发以2cm/s的速度向点C移动,动点Q从C出发以1cm/s的速度向点A移动,如果动点P、Q同时出发,要使△CPQ与△CBA相似,所需要的时间是多少秒?
如图,已知A(4,a),B(-2,-4)是一次函数y=kx+b 的图象和反比例函数的图象的交点.(1)求反比例函数和一次函数的解析式;(2)求△AOB的面积.(3)根据图象求出使一次函数的值大于反比例函数的值时,x的取值范围.
如图,△ABC是等边三角形,点D、E分别在BC、AC上,且BD=CE,AD与BE相交于点F.(1)试说明:△ABD≌△BCE. (2)△AEF与△ABE相似吗?请说明理由.(3)试说明:BD2=AD·DF.