阅读材料:关于三角函数还有如下的公式:利用这些公式可以将一些不是特殊角的三角函数转化为特殊角的三角函数来求值.例:======根据以上阅读材料,请选择适当的公式解答下面问题(1)计算:sin15°;(2)乌蒙铁塔是六盘水市标志性建筑物之一(图1),小华想用所学知识来测量该铁塔的高度,如图2,小华站在离塔底A距离7米的C处,测得塔顶的仰角为75°,小华的眼睛离地面的距离DC为1.62米,请帮助小华求出乌蒙铁塔的高度.(精确到0.1米,参考数据)
如图,在平面直角坐标系中,⊙M与x轴交于A、B两点,AC是⊙M的直径,过点C的直线交x轴于点D,连接BC,已知点M的坐标为(0,),直线CD的函数解析式为y=-x+5. (1)求点D的坐标和BC的长; (2)求点C的坐标和⊙M的半径; (3)求证:CD是⊙M的切线.
已知:二次函数(m为常数). (1)若这个二次函数的图象与x轴只有一个公共点A,且A点在x轴的正半轴上. ①求m的值; ②四边形AOBC是正方形,且点B在y轴的负半轴上,现将这个二次函数的图象平移,使平移后的函数图象恰好经过B,C两点,求平移后的图象对应的函数解析式; (2)当0≤≤2时,求函数的最小值(用含m的代数式表示).
如图,在Rt△ABC中∠ABC=90°,BA=BC,P在△ABC的内部,且∠APB=135°,PA:PC=1:3,求PA:PB
设二次函数的图象为C1.二次函数的图象与C1关于y轴对称. (1)求二次函数的解析式; (2)当≤0时,直接写出的取值范围; (3)设二次函数图象的顶点为点A,与y轴的交点为点B,一次函数( k,m为常数,k≠0)的图象经过A,B两点,当时,直接写出x的取值范围.
已知二次函数. (1)若点与在此二次函数的图象上,则(填 “>”、“=”或“<”); (2)如图,此二次函数的图象经过点,正方形ABCD的顶点C、D在x轴上, A、B恰好在二次函数的图象上,求图中阴影部分的面积之和.