计算:(1);(2)
(为方便答题,可在答题卡上画出你认为必要的图形) 如图,过原点的直线和与反比例函数的图象分别交于两点A,C和B,D,连结AB,BC,CD,DA. (1)四边形ABCD一定是 四边形;(直接填写结果) (2)四边形ABCD可能是矩形吗?若可能,试求此时k1和k2之间的关系式;若不可能,说明理由; (3)设P(,),Q(,)(x2 > x1 > 0)是函数图象上的任意两点,,,试判断,的大小关系,并说明理由.
如图,四边形OMTN中,OM=ON,TM=TN,我们把这种两组邻边分别相等的四边形叫做筝形.(1)试探究筝形对角线之间的位置关系,并证明你的结论;(2)在筝形ABCD中,已知AB=AD=5,BC=CD,BC>AB,BD,AC为对角线,BD=8.①是否存在一个圆使得A,B,C,D四个点都在这个圆上?若存在,求出圆的半径;若不存在, 请说明理由;②过点B作BF⊥CD,垂足为F,BF交AC于点E,连接DE.当四边形ABED为菱形时,求点F到AB 的距离.
如图,过原点的直线和与反比例函数的图象分别交于两点A,C和B,D,连结AB,BC,CD,DA. (1)四边形ABCD一定是 四边形;(直接填写结果) (2)四边形ABCD可能是矩形吗?若可能,试求此时和之间的关系式;若不可能,说明理由; (3)设P(,),Q(,)()是函数图象上的任意两点,,,试判断,的大小关系,并说明理由.
在Rt△ABC中,∠A=90°,AC=AB=4, D,E分别是AB,AC的中点.若等腰Rt△绕点A逆时针旋转,得到等腰Rt△,设旋转角为,记直线与的交点为P. (1)如图1,当时,线段的长等于 ,线段的长等于 ;(直接填写结果) (2)如图2,当时,求证:,且; (3)①设BC的中点为M,则线段PM的长为 ;②点P到AB所在直线的距离的最大值为 .(直接填写结果)
如图1,关于的二次函数y=-+bx+c经过点A(-3,0),点C(0,3),点D为二次函数的顶点,DE为二次函数的对称轴,E在x轴上。(1)求抛物线的解析式;(2)DE上是否存在点P到AD的距离与到轴的距离相等,若存在求出点P,若不存在请说明理由;(3)如图2,DE的左侧抛物线上是否存在点F,使2=3,若存在求出点F的坐标,若不存在请说明理由。